日本の原子力水素に未来はあるのか
そもそも原子力水素とは何か
原子力水素とは、原子力をエネルギー源として製造される水素のことをいう。2050カーボンニュートラル実現のためには運輸、産業、果ては発電においても水素を利用することがキーポイントなるといわれている。
水素は石油のような天然資源としては存在しないので、現在は主に天然ガスなどの化石燃料を高温蒸気で改質(Steam Methane Reforming: SMR法)して作られている。この場合、二酸化炭素の発生を伴うのでカーボンフリーではない。
再生可能エネルギー(風力や太陽光)や原子力によって水素が製造できれば、事実上カーボンフリーの水素が得られる。自然エネルギーは天候に左右されるが、原子力は安定的な水素製造が可能な点でメリットが大きい。
水素需要と経済性
現在の年間水素需要は、全世界で7500万トンである。これはもっぱら製造業で利用されている。今後は、運輸および発電部門の需要が著しく伸張する。2050年の需要予測は、民生つまり地域や建物の暖房などに2100万トン〜5300万トン、発電に600万トン〜2億2000万トン、産業用に3700万〜1億2000万トン、そして運輸に1億2000万トン〜3億トンとなっている注1)。総計では最大約7億トンで、現在需要の約10倍である。
国際エネルギー機関(IEA)によれば、SMR法による水素製造コストは1kgあたり0.9〜1.8ドル程度とされている。二酸化炭素の回収・利用システム(CCUS)のコストを含めると、1.5倍程度になる。
太陽光や風力の再生可能エネルギーによる水素製造コストは、現在1kgあたり5ドル程度とされているが、将来的にはその半額以下になるという見込みもある。
これに対して、原子力水素はいくつかの製造方式にもよるが、2.5ドル〜3ドル/kgである。
原子力水素
原子力水素の製造には主に3つの方法がある。アルカリ電解法、固体高分子電解(Polymer Electrolyte Membrane: PEM)法、そして高温蒸気電解(High-Temperature Steam Electrolysis: HTSE)法である。これらはいずれも電気分解法である。この他に、日本が特に力を入れて来て、世界をリードしている熱化学方式によるI-S法もある。これは1000℃近い高温のもとで、ヨウ素(I)と硫黄(S)を触媒のように利用して化学反応を促進させて水を水素と酸素に分解する方式である。高温ガス炉を利用する。
アルカリ電解法は中学校の理科実験でおなじみである。このアルカリ電解法とPEM法は60から80℃程度の温度のもとで行われる。他方、HTSE法は650〜1000℃程度である。I-S 法同様に高温ガス炉の出番である。
各方式のメリットとデメリットはどうだろうか。
アルカリ電解法は確立した技術だが、効率つまりコストが劣る。PEM法は燃料電池の逆過程を利用する。アルカリ電解法に比べてコンパクトなシステムになるが高価である。HTSE法は固体酸化物電解セルを用いるが、600℃以上の高温での耐性が大きな課題であり、まだ商業化に至っていない。ちなみにI-S法も実験室レベルの技術的実証段階である。
国際原子力機関(IAEA)は2018年に原子力水素の総合的評価を実施した。その中で製造コストに関しては、表1の結果を示した。
今後実用化に向けての課題は少なくないが、高温ガス炉(High Temperature Gas-cooled Reactor: HTGR)を利用したHTSE法およびI-S法にアドバンテージがあるという結果である。
日本の現状と課題
原子力水素に関しては、フランス、米国、カナダがその研究開発を意欲的に進めている。
わが国は、高温ガス炉の実験炉を世界に先駆けて開発し、茨城県大洗町で稼働していた。しかし、3.11以降停止したままである。I-S法についても成果があげられつつあったが、この10年間は進展が止まったままである。このままでは、原子力水素に関して、諸外国の後塵を拝することになる。加えて高温ガス炉の開発では、中国が急追しもはやわが国を追い越さんとしている注2)。
第6次エネルギー基本計画では、相変わらず原子力への依存度を可能な限り削減するという文言が残された。
2050年カーボンニュートラルに向けては、水素の大量製造・利用は避けて通れない道である。
600℃以上の高温領域での原子力水素製造の実用化に、今後各国がしのぎを削る。そのためには、原子力とりわけ高温ガス炉の果たす役割が大きい。
勝負はこの先10年だと見ている。
このままでは、日本は世界の水素エネルギー市場で遅れを取ることになるのは必定である。
これまで日本が世界をリードして研究開発して来た高温ガス炉およびI-S法の実績を見殺しにするわけにはいかない。新たな政治のイニシャティブが日本の原子力の復活を目指すべき時が来ている。
注1) https://about.bnef.com/new-energy-outlook-2020/
注2) https://www.jaif.or.jp/journal/oversea/5292.html
関連記事
-
メタンはCO2に次ぐ温室効果ガスとして知られている。IPCC報告を見ると、過去、CO2による温暖化が約0.8℃だったのに対してメタンは約0.5℃の温暖化を引き起こした、としている(下図の左から2番目のMethane)。
-
私の専門分野はリスクコミュニケーションです(以下、「リスコミ」と略します)。英独で10年間、先端の理論と実践を学んだ後、現在に至るまで食品分野を中心に行政や企業のコンサルタントをしてきました。そのなかで、日本におけるリスク伝達やリスク認知の問題点に何度も悩まされました。本稿では、その見地から「いかにして平時にリスクを伝えるのか」を考えてみたいと思います。
-
例年開催されるCOPのような印象を感じさせたG7が終わった。新聞には個別声明要旨が載っていた。気候変動対策については、対策の趣旨を述べた前文に以下のようなことが書かれていた。 【前文】 遅くとも2050年までにCO2の排
-
北関東や東北を中心に9月10日から11日に降った記録的な豪雨で、洪水や土砂崩れが発生した。栃木県、茨城県で鬼怒川が氾濫し、13日時点では、栃木県で1人が死亡、茨城県常総市では13日時点で15人が行方不明になり、住宅多数が流された。被害の全貌はまだ不明だ。行方不明者の安全、被災者の方の休息、そして早期の復旧を祈る。
-
東京新聞によれば、学術会議が「放射性廃棄物の処理方法が決まらない電力会社には再稼動を認可するな」という提言を17日にまとめ、3月に公表するらしい。これは関係者も以前から懸念していたが、本当にやるようだ。文書をみていないので確かなことはいえないが、もし学術会議が核廃棄物の処理を条件として原発の運転停止を提言するとすれば違法である。
-
福島第一原発事故によって、放射性物質が東日本に拡散しました。これに多くの人が懸念を抱いています。放射性物質には発がんリスクがあり、警戒が必要です。
-
IPCCは10月に出した1.5℃特別報告書で、2030年から2052年までに地球の平均気温は工業化前から1.5℃上がると警告した。これは従来の報告の延長線上だが、「パリ協定でこれを防ぐことはできない」と断定したことが注目
-
政府エネルギー・環境会議から9月14日に発表された「革新的エネルギー・環境戦略」は2030年代に原子力発電ゼロを目指すものであるが、その中味は矛盾に満ちた、現実からかけ離れたものであり、国家のエネルギー計画と呼ぶには余りに未熟である。
動画
アクセスランキング
- 24時間
- 週間
- 月間