サイエンスがゼロの水素政策

2021年05月27日 07:10
アバター画像
元静岡大学工学部化学バイオ工学科

元静岡大学工学部化学バイオ工学科 松田 智

5月22日に放映されたNHK・ETVの「サイエンスZERO」では、脱炭素社会の切り札として水素を取り上げていたが、筆者の目からは、サイエンス的思考がほとんど感じられない内容だった。

サイエンスZERO(NHK HPより)

最初に断っておくが、筆者はETVをNHKの中で高く評価しているし、この番組のすべてが悪いと言うわけではない。しかし、以前にも水素を取り上げた回があったが、ひたすら水素礼賛に終始しており、閉口した記憶がある。水素の抱えている問題点を、何ら指摘していないから。

この回でも、冒頭いきなり、菅首相の就任直後の演説中にある「無尽蔵にある水素を新たな電源として位置づけ、大規模で低コストな水素製造装置を実現します」と言う言葉を引用している。

しかしこの言葉、意味が不明瞭で種々の問題を抱えている。まず最初の「無尽蔵にある水素」とは何を指すのか?確かに、宇宙規模で見れば、最も豊富に存在する元素は水素であり、その量も無尽蔵ではあるが、地球上で人間が入手出来る水素でエネルギー利用可能なもの(H2)は、資源として産出しない。少なくとも、決して無尽蔵ではない。

人間の尺度で無尽蔵と言えるのは、水、特に海水であろう(地球上の水の96.5%が海水、淡水は2.5%しかない)。しかし、これを「新たな電源として位置づける」とは・・?後段で「水素製造装置」と言っているから、電源と言っても水力や潮汐発電ではなさそうだ。

どうやら、無尽蔵にある水素とは、水(H2O)に含まれる水素を指すらしい。しかし、H2とH2Oの区別がつかないようでは、中学レベルの化学的理解さえもないことになる。これは、由々しき事態ではないのか?もっとも、菅首相は、国会演説で「温室効果ガス」を「こうしつおんかガス」と読んで、議場をザワつかせた科学リテラシーの持ち主であるから、何ら不思議はないのかも知れないが。

後半の「大規模で低コストな水素製造装置を実現します」も不明確で、具体的な方式を言えとまでは求めないが、少なくとも、いつまでに、どこで、どの程度の規模で生産するつもりなのか、腹づもりだけでも示さないと、単なる空念仏に終わってしまう。

常識的に考えれば、水(海水)から水素(H2)を製造するとなれば、電気分解を想定することになるが「大規模で低コスト」となると、国内じゃちょっと無理そうだな、となる。実際、番組に出演した教授の話では、2017年の「水素基本戦略」が下敷きになっているそうだから、やはり海外での大規模生産を念頭においていることになる(ただし、豪州褐炭などを水素源と考えるならば、無尽蔵と言う表現は使わないだろう)。

しかし、水資源というのは、元々無尽蔵ではない。雨の多い日本では実感しにくいが、人間の利用できる真水は、意外に少量しかない。もし海水を電気分解すると、水素(H2)と同量の塩素(Cl2)が発生し、液相には水酸化ナトリウムが蓄積するから、現実的でない。実際、水酸化ナトリウム(カセイソーダ)の工業的生産法は、食塩水の電気分解である(海水は不純物が多いので使われないが)。砂漠地帯では、水の入手が課題になることは、前稿で述べた。

番組では、太陽光発電と水素製造・燃料電池の組合せで、電力貯蔵ができることが主な利点として挙げられていた。この場合、電気分解による水素製造の効率も、燃料電池による発電の効率も約60%なので、二段階だと36%、すなわち64%もロスすることは、触れられていない。

前稿でも触れたが、電力を蓄えたら64%も無くなってしまう蓄電池は、決して売り物にならないはずである。しかも、太陽光発電のコストは高い。その高い電力の36%しか使えないとなれば、電力単価はさらに3倍近く高いものになる。これが「脱炭素の切り札」の実態なのだ。「大規模で低コストでの水素製造」は、どこへ行ったのか?

番組後半では、水素を液化するのに新しい技術開発が必要とのことで、磁気とヘリウムを使った新しい冷却装置が紹介されていた。実用化されれば、液化コストが半分になるとか。

しかし、何万トンという水素を液化するプラントをこの方式で建設するのは、かなり大変だろう。大量のヘリウムの調達も、大きな課題になる。いま建設中のリニア新幹線でも、ヘリウム不足で走れなくなる心配が言われているくらいだから(JRはそのため、液体窒素程度の温度で作動する超伝導素材の開発に血まなこになっているわけだが、まだ完成したとの話は聞いていない)。

それより何より、水素の液化コストが半分になるからと言って、水素の抱えている問題点の多くは何ら解決されないことに注目しよう。少なくとも、前稿で触れた「海外頼みの水素供給体制」は変わりないし、その際のエネルギーロス、従って必然的なコスト高の問題は、何一つ解決策を見出せないでいる。もちろん、番組でも課題とその解決策は、全く示されなかった。

5月25日付けの朝日新聞経済欄には、水素自動車・液体水素運搬船(豪州褐炭水素)・水素アンモニア発電と、華々しく記事が並んでいた。しかしどれ一つとして、筆者が前稿までに指摘した問題点を述べておらず、単に「脱CO2に役立つ」としか書かれていない。

現時点で、商売ベースで水素が使えている事業体・企業はない。現在進行中の水素関連事業は、表向き民間企業が進めているように見えても、実際はすべて国の補助金がつぎ込まれた国家プロジェクトである。補助金に商社その他の企業が群がり、それをマスコミが囃し立てる構図が出来上がっている。そのためだと思うが、水素の問題点を指摘する声は、大手マスコミには、まず載らない。

菅首相以下、政治家に科学技術の詳しい内容理解を求めるのは無理だとしても、その下で働く経産省や資源エネルギー庁のお役人たちは、一応エネルギー関連の「専門家」のはずだから、水素やアンモニア発電が抱えている問題点を認識できていなければならないはずである。

もし、問題点を認識できないとすれば、初歩的な化学の理解さえもないことになり、単に無知無能である。認識できているのに言わないとすれば、それは公僕としての国民に対する誠実さの欠如・裏切りであるとしか言えない。多額の税金の無駄遣いを見逃したのと同じだからである。

筆者は、そのどちらでもないことを願いたい。論語にも言っている、「過ちて改めざる、これを過ちと謂う、過ちては改むるに憚ることなかれ」と。

どうか、サイエンスがゼロの水素政策を止めていただきたい。その知恵と労力とお金を、もっと意味のある仕事に使って下さい。

松田 智
2020年3月まで静岡大学工学部勤務、同月定年退官。専門は化学環境工学。主な研究分野は、応用微生物工学(生ゴミ処理など)、バイオマスなど再生可能エネルギー利用関連

This page as PDF
アバター画像
元静岡大学工学部化学バイオ工学科

関連記事

  • 2012年9月19日に設置された原子力規制委員会(以下「規制委」)が活動を開始して今年の9月には2周年を迎えることとなる。この間の5名の委員の活動は、本来規制委員会が行うべきと考えられている「原子力利用における安全の確保を図るため」(原子力規制委員会設置法1条)目的からは、乖離した活動をしていると言わざるを得ない。
  • アゴラ研究所の運営するエネルギーのバーチャルシンクタンクGEPR(グローバルエナジー・ポリシーリサーチ)はサイトを更新しました。
  • 国連はアンケートの結果として、「3人に2人が世界は気候危機にあると答えた」と報告した。だがこれは最悪のレポートだ、と米国ブレークスルー研究所のカービーが批判している。紹介しよう。 kodda/iStock 国連開発計画は
  • 元静岡大学工学部化学バイオ工学科 松田 智 前稿で科学とのつき合い方について論じたが、最近経験したことから、改めて考えさせられたことについて述べたい。 それは、ある市の委員会でのことだった。ある教授が「2050年カーボン
  • 日本では福島原発事故、先進国では市民の敬遠によって、原発の新規設置は難しくなっています。また使用済み核燃料と、棄物の問題は現在の技術では解決されていません。しかし世界全体で見れば、エネルギー不足の解消のために、途上国を中心に原発の利用や新設が検討されています。
  • 福島第一原子力発電所の重大事故を契機に、原発の安全性への信頼は大きくゆらぎ、国内はおろか全世界に原発への不安が拡大しました。津波によって電源が失われ、原子炉の制御ができなくなったこと、そしてこれを国や事業者が前もって適切に対策をとっていなかったこと、そのため今後も同様の事故が発生するのではないかとの不安が広がったことが大きな原因です。
  • 3.11の大原発事故によって、日本と世界は、多かれ少なかれ原発代替を迫られることとなった。それを受けて、太陽光発電などの再生可能エネルギーへのシフトで脱原発・脱化石燃料という議論が盛り上がっている。すぐには無理だが、中長期的には可能だという議論も多い。当面はやむを得ず、CO2排出量を始め環境負荷が他の化石燃料よりずっと少ない天然ガスの効率的利用を繋ぎとして使って、中長期的には実現させるという論調も多い。
  • 筆者は現役を退いた研究者で昭和19年生まれの現在68歳です。退職後に東工大発ベンチャー第55号となるベンチャー企業のNuSACを立ち上げました。原子力技術の調査を行い、現在は福島県での除染技術の提案をしています。老研究者の一人というところでしょうか。

アクセスランキング

  • 24時間
  • 週間
  • 月間

過去の記事

ページの先頭に戻る↑